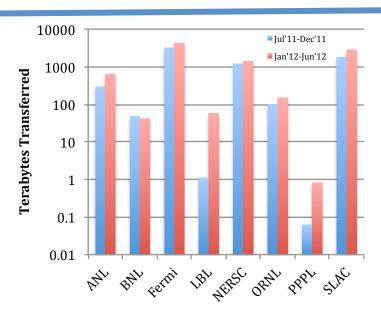
ASCR Next Generation Networks for Science Research Projects

Enhancing and Supporting GridFTP: An Essential Component of DOE High-speed Networking -(10/2011 - 9/2014)PI: Steven Tuecke - Argonne National Laboratory

GridFTP is the de facto standard workhorse for large data movement in distributed science projects across DOE and worldwide

Project Goals:


- Leverage next-generation Terabit networks and multi-core processors
- Improve support for firewalls and NATs
- Simplify ease of use and administration
- Support DOE facilities and scientists

Current Accomplishments:

- 1 Petabyte transferred per day
- Security and firewall enhancements
- Native packaging and simple installer, dramatically reducing install time
- Improved mass storage system support
- Six releases since project start, with dozens of fixes and requested features

Impacts on DOE's Mission:

- Support DOE big data transfer needs of:
 - exascale computers: e.g., ALCF, OLCF
 - scientific facilities e.g., NERSC, APS
 - science projects, e.g., LHC, ESG
- Higgs discovery "only been possible because of the extraordinary achievements of ... grid computing"—Rolf Heuer, CERN DG [July 2012]

Enhancing and Supporting GridFTP: An Essential Component of DOE High-speed Networking

Steven Tuecke

Deputy Director, Computation Institute
Argonne National Laboratory and University of Chicago

Project Overview

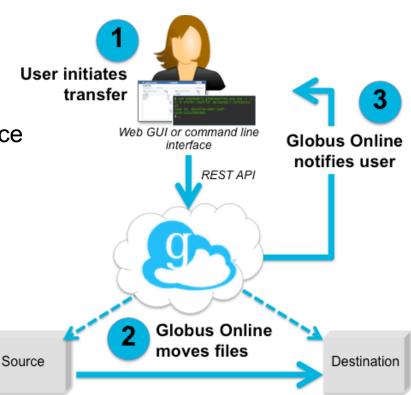
- Project title:
 - Enhancing and Supporting GridFTP: An Essential Component of DOE High-speed Networking
- PI: Steven Tuecke
- Project start: October 2011
- Duration: 3 years
- Objectives:
 - Enhancements to GridFTP protocol & Globus GridFTP
 - Support Globus GridFTP for DOE community

- Standard workhorse for large data movement in distributed science projects across DOE and worldwide
 - February 2013: 3,761 GridFTP servers reported
 382 million operations and 29.2 petabytes moved
- GridFTP protocol extends FTP for:
 - High-performance
 - Strong security
 - Reliability
- Globus GridFTP server
 - Mature, widely used implementation of GridFTP

DOE use cases driving GridFTP

Globus Online driving GridFTP transfers

- NERSC: Recommended method for transferring files to/from GPFS file systems and HPSS
- ALCF: User remote file transfer to/from GPFS
- Advanced Photon Source: Distributed instrument data to users worldwide
- ESnet DTNs
- Etc.
- Science communities with custom clients
 - E.g. HEP, ESG


Globus Online

Move, sync, share files

- Easy "fire-and-forget" transfers
- Share with any Globus user or group
- Automatic fault recovery & high performance
- Across multiple security domains
- Web, command line, and REST interfaces

Minimize IT costs

- Software as a Service (SaaS)
 - No client software installation
 - New features automatically available
- Consolidated support & troubleshooting
- Simple endpoint installation with Globus Connect and GridFTP
- >7,000 registered users, >12PB moved
- Recommended by ESnet, NERSC, ALCF, XSEDE, Blue Waters, NCAR, many Universities

Enhancing and Supporting GridFTP Project Objectives

- Leverage next-generation Terabit networks and multi-core processors
 - Support big data transfer needs of exascale computers and scientific instruments
 - Not just big files, but lots of small files (LOSF), and end-to-end checksum verification
- Improve support for firewalls and NATs
- Simplify ease of use and administration
- Support DOE facilities and scientists

Proposed Work

Performance improvements

- Parallel command execution (checksums and LOSF)
- Enable multiplexed transfers
- Efficient recursive directory transfers
- New firewall friendly data channel mode(s)
 - Fix mode E connection directionality limitation
 - Single port GridFTP; no ephemeral ports
 - TCP simultaneous open, UDP with NAT traversal
- Simplify installation and configuration
- Native Windows implementation
- Better UDT support

Highlights during last year

- Performance study of multi-threaded, secure transfers
 - Gayane Vardoyan, Rajkumar Kettimuthu, Michael Link, Steven Tuecke, "Characterizing Throughput Bottlenecks for Secure GridFTP Transfers", Proceedings of the International Conference on Computing, Networking and Communications, January 2013.
- Fixed various multi-threading bugs
- Prototype of single-port GridFTP server
- Alpha of UDT over UDP with NAT traversal with STUN & ICE
- Beta sharing support (with Globus Online)
- HPSS 7 integration
- Hybrid independent/striped server configuration
- Allow clients to authenticate without delegating
- Configure IPv6 through environment variable
- 3 releases supporting >15 OS distributions
- Dozens of bug fixes and small enhancements

UDT over UDP with NAT traversal

Source

SITE UPAS 0

200 tGpe prsJ1JkvZgn60w1PeCgYOX 1,2013266431,10.1.1.128,58646,host

[foundation,priority,address,port,type]

[HOST->"host"]

[SERVER REFLEXIVE->"srflx"]

[PEER REFLEXIVE->"prflx"]

[RELAYED->"relay"]

SITE UPRT fOW8 65yXCLBY4r/6/Y9mmYtMb/ 1,2013266431,192.168.1.10,54003,host 200 OK

PORT 192.168.1.10,210,243 200 PORT Command successful.

Destination

SITE UPAS 1

200 fOW8 65yXCLBY4r/6/Y9mmYtMb/ 1,2013266431,192.168.1.10,54003,host

SITE UPRT

tGpe prsJ1JkvZgn60w1PeCgYOX 1,2013266431,10.1.1.128,58646,host 200 OK

PASV

227 Entering Passive Mode (192.168.1.10,210,243)

[transfer as usual]

Plans for remainder of project

- Release single-port GridFTP server
- Release UDT over UDP with NAT traversal
- Release sharing support
- OGF standards submissions for extensions
- Native, multi-user implementation on Windows
- Optimizations for lots of small files, checksum calculation, parallel file systems
- Continue simplifying installation, configuration, operations and update
- Explore TCP simultaneous open
- Continue supporting DOE users and facilities